
Associative Graph Data Structures AGDS
with an Efficient Access via AVB+trees

AGH University of
Science and Technology

Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

mailto:horzyk@agh.edu.pl

Brains and Neurons

How do they really work?
How we can use brain-like structures

to make computations
more efficient and intelligent?

Brain Structures

Why the brain structures look
so complex and irregular?

Brains consist of

complex graphs of

connected neurons

and other elements.

Neurons and their connections represent input data

and various relations between them, defining

objects and similarities, proximities, sequence,

chronology, context, and establishing

causal relationships between them.

Data Tables

Such relations are not enough!

In computer science, we mostly use

tables to store, organize and manage data,

but common relations like identity, similarity,

neighborhood, minima, maxima, number of

duplicates must be found. The more data

we have the bigger time loss we face!

Relational Databases

Is it wise to lose the majority of the
computational time for searching

for data relations?!

Relational databases relate stored data only horizontally, not vertically, so

we still have to search for duplicates, neighbor or similar values and objects.

Even horizontally, data are not related perfectly and many duplicates of

the same categories occur in various tables which are not related anyhow.

In result, we need to lose a lot of computational time to search out

necessary data relations to compute results or make conclusions.

Data Relationships

Let us use the biologically
optimized solution!

We can find a solution in

the brain structures where

data are stored together

with their relations.

 Neurons can represent any subset of

input data combinations which activate them.

 Neuronal plasticity processes automatically

connect neurons and reinforce connections

which represent related data and objects.

AGDS
Associative Graph Data Structure

Connections represent various relations between
AGDS elements like similarity, proximity,

neighborhood, definition etc.

Attributes

Attributes Aggregated

and Counted

Values

Objects

AGDS

AVB+Trees
Sorting Aggregated-Value B-Trees

Internal states of APN neurons are updated only
at the end of internal processes (IP) that are

supervised by the Global Event Queue.

AVB+trees are typically much smaller in size and height than B-trees

and B+trees thanks to the aggregations of duplicates and not using

any extra internal nodes as signposts as used in B+trees.

An AVB+tree is a hybrid structure that represent sorted list of elements

which are quickly accessed via self-balancing B-tree structure.

Elements aggregate and count up all duplicates of represented values.

Properties of AVB+trees

Efficient hybrid structure!

 Each tree node can store one or two elements.

 Elements aggregate representations of duplicates

and store counters of aggregated duplicates of values.

 Elements are connected in a sorted order, so it is

possible to move between neighbor values very quickly.

 AVB+trees do not use extra nodes to organize access to

the elements stored in leaves as B+trees.

 AVB+trees use all advantages of B-trees, B+trees,

and AVB-trees removing their inconvenience.

 They implement common operations like Insert, Remove,

Search, GetMin, GetMax, and can be used to compute

Sums, Counts, Averages, Medians etc. quickly.

 They supply us with sorted lists of elements which

are quickly accessible via this tree structure and thanks

to the aggregations of duplicates that substantially

reduce the number of elements storing values.

Capacity of AVB+Trees

The same number of elements can be stored by
various AVB-tree structures,

e.g. 11 or 17 elements!

Capacities of elements of the smallest AVB+trees.

Insert Operation
on AVB+Trees

AVB+trees self-balance, self-sort and self-organize
the structure during the insert operation!

Insert Operation

The Insert operation on the AVB+tree is processed as follows:

1. Start from the root and go recursively down along the branches to

the descendants until the leaf is not achieved after the following rules:

• if one of the elements stored in the node already represents the inserted

key, increment the counter of this element, and finish this operation;

• else go to the left child node if the inserted key is less than the key

represented by the leftmost element in this node;

• else go to the right child node if the inserted key is greater than

the key represented by the rightmost element in this node;

• else go to the middle child node.

2. When the leaf is achieved:

• and if the inserted key is already represented by one of the elements in

this leaf, increment the counter of this element, and finish this operation;

• else create a new element to represent the inserted key and initialize

its counter to one, next insert this new element to the other elements

stored in this leaf in the increasing order, update the neighbor

connections, and go to step 3.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Insert Operation

3. If the number of all elements stored in this leaf is greater than two,

divide this leaf into two leaves in the following way:

• let the divided leaf represent the leftmost element representing

the least key in this node together with its counter;

• create a new leaf and let it represent the rightmost element representing

the greatest key in this node together with its counter;

• and the middle element (representing the middle key together with

its counter) and the pointer to the new leaf representing the rightmost

element pass to the parent node if it exists, and go to step 4;

• if the parent node does not exist, create it (a new root of the AVB+tree)

and let it represent this middle element (representing the middle key

together with its counter), and create new branches to the divided leaf

representing the leftmost element and to the leaf pointed by the passed

pointer to the new leaf representing the rightmost element.

Next, finish this operation.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Rebalancing during
Insert Operation

Self-balancing and self-sorting mechanism of
the Insert Operation when a node is overfilled

and must be divided!

A self-balancing mechanism of an AVB+tree during the Insert operation

when adding the value (key) „2” to the current structure which must be

reconstructed because the node is overfilled and must be divided.

Insert Operation

4. Insert the passed element between the element(s) stored in this

node in the key - increasing order after the following rules:

• if the element has come from the left branch, insert it on the left side

of the existing element(s) in this node;

• if the element has come from the right branch, insert it on the right

side of the existing element(s) in this node;

• if the element has come from the middle branch, insert it between

the existing element(s) in this node.

5. Create a new branch to the new node (or leaf) pointed by the passed

pointer and insert this pointer to the child list of pointers immediately

after the pointer representing the branch to the divided node (or leaf).

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Insert Operation

6. If the number of all elements stored in this node is greater than two,

divide this node into two nodes in the following way:

• let the existing node represent the leftmost element representing

the least key in this node together with its counter;

• create a new node and let it represent the rightmost element

representing the greatest key in this node together with its counter;

• the middle element (representing the middle key together with its

counter) and the pointer to the new node representing the rightmost

element pass to the parent node if it exists; and go back to step 4;

• if the parent node does not exist, create it (a new root of the AVB+tree)

and let it represent this middle element (representing the middle key

together with its counter), and create new branches to the divided

node representing the leftmost element and to the node pointed by

the passed pointer to the new node representing the rightmost element.

Next, finish this operation.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Remove Operation

 The Remove operation allows to remove a key from

the AVB+tree structure and next quickly rebalance and

reorganize the structure automatically if necessary.

 If the removed key is duplicated in the current structure,

then only the counter of the element which represents it

is decremented.

 When the removed key is represented by the element which

counter is equal one then the element is removed from the node.

 If this node is a leaf containing only a single element,

then the leaf is removed as well, and a rebalancing operation of

the AVB+tree is executed.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Remove Operation

The Remove operation on the AVB+tree is processed as follows:

1. Start from the root and go recursively down along the branches to

the descendants until the removed key is found in one of the elements

in the nodes after the following rules:

• if one of the elements stored in the node represents the removed key

go to step 2;

• else if this node is a leaf, finish this operation without removing

the key from the tree because this key was not found;

• else go to the left child node if the removed key is less than the key

represented by the leftmost element in this node;

• else go to the right child node if the removed key is greater than the key

represented by the rightmost element in this node;

• else go to the middle child node.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Remove Operation

2. Decrement the counter of the element representing the removed key and:

• if the decremented counter is greater or equal one finish this operation

success-fully;

• else remove the element from the node and go to step 3.

3. If the node where the element was removed is not a leaf go to step 12 else:

• if there is still another element in this leaf after the reduction of the

removed element then finish this operation successfully;

• else remove the leaf and go to step 4.

4. If the parent node of the removed node has only a single element,

go to step 5 else go to step 6.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Remove Operation

2. Decrement the counter of the element representing the removed key and:

• if the decremented counter is greater or equal one finish this operation

success-fully;

• else remove the element from the node and go to step 3.

3. If the node where the element was removed is not a leaf go to step 12 else:

• if there is still another element in this leaf after the reduction of the

removed element then finish this operation successfully;

• else remove the leaf and go to step 4.

4. If the parent node of the removed node has only a single element,

go to step 5 else go to step 6.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Remove Operation
on AVB+Trees

Move and Join Operations on AVB+trees during
Remove Operation which reorganize this tree!

Remove Operation

5. If the second child of the parent node of the removed node also only has

a single element (Fig. A) than join these two elements together and remove

the second child as well, and go to step 7;

else create the removed node again and move the parent element to this

node and its neighbor connected element from its second child move to

the parent node (Fig. B).

6. For the parent node of the removed element which contains two elements:

• if the second neighbor element connected to the parent element which

was connected to the removed element in the removed node is single

in its node then move this parent element to this child joining them together

in this child node (Fig. C);

• else create the removed node again and move the parent element

to this node and its neighbor connected element from its second child

move to the parent node (Fig. D).

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Remove Operation
on AVB+Trees

Move and Join Operations on AVB+trees during
Remove Operation which reorganize this tree!

Remove Operation

7. For the joined node, if the parent node has only a single element

(Fig. E-H), go to step 8 else go to step 11.

8. If the second child of this parent node has only a single element;

go to step 9 else go to step 10.

9. Join parent element with the second child element and move the joined

element to the new joined parent (Fig. E) and go to step 7 until this parent is not

a root of the tree. When the parent is the root finish this operation successfully.

10. For the second child containing two elements (Figs. F-H):

• if the child of this child connected to the parent element is single

in its node (Fig. F-G) move it to the parent and the node from the parent to

the reconstructed branch where the nodes have been joined;

next, go to step 6 balancing the second child of this parent.

• else for the child of this child connected to the parent element is not alone

in its node (Fig. H), move this child to this connected parent node and

the parent element to the branch where the nodes have been joined.

Next, finish this operation successfully.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Remove Operation
on AVB+Trees

Move and Join Operations on AVB+trees during
Remove Operation which reorganize this tree!

Remove Operation

11. For the second child containing two elements (Fig. I-J):

• if one of the neighbor siblings of the joined node has a single element

then move the parent element of the joined node to this neighbor sibling

and move the joined node to the children of this neighbor siblings (Fig. I).

• else move the connected parent element to the branch where the nodes

have been joined, the first closest element from the two-element child to

the node and its connected child to the child of the reconstructed branch

(Fig. J).

• Next, finish this operation successfully.

12. For elements removed from the non-leaf node (Fig. K-P):

• if this node has only two children go to step 13;

• else go to step 14.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Remove Operation
on AVB+Trees

Move and Join Operations on AVB+trees during
Remove Operation which reorganize this tree!

Remove Operation

13. If both two children have only a single element each

then join them together in one node (Fig. K) and go to step 7;

else move one element of the two-element child to the parent to replace

the removed element (Fig. L-M). Next, finish this operation successfully.

14. If both two neighbor children have only a single element each

then join them together in one node (Fig. N);

else move one element of the two-element child to the parent to replace

the removed element (Fig. O-P).

Next, finish this operation successfully.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Remove Operation
on AVB+Trees

Move and Join Operations on AVB+trees during
Remove Operation which reorganize this tree!

Update Operation

 The Update operation is a simple sequence of Remove and

Insert operations because it is not possible to simply update

a value in an element because of the structure of AVB+trees

which represent various relations.

 Data can be easily updated (a value can be changed)

only in those structures which do not represent relations,

e.g. unsorted arrays, lists, or tables.

 The Update operation on an AVB+tree removes the old key

(value) from this structure using the Remove operation and

inserts an updated one using the Insert operation.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Search Operation

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

The Search operation in the AVB+tree is processed as follows:

1. Start from the root and go recursively down along the branches to

the descendants until the searched key or the leaf is not achieved

after the following rules:

• If one of the keys stored in the elements of this node equals to

the searched key, return the pointer to this element;

• else go to the left child node if the searched key is less than

the key represented by the leftmost element in this node;

• else go to the right child node if the searched key is greater than

the key represented by the rightmost key in this node;

• else go to the middle child node.

2. If the leaf is achieved and one of the stored elements in this leaf contains

the searched key, return the pointer to this element, else return the null pointer.

GetMin and GetMax
Operations

The GetMin and GetMax operations can be implemented in two

different ways dependently on how often extreme elements are

used in other computations using an AVB+tree structure:

1. The first way is used when extreme keys are not often used.

In this case, it is necessary to start from the root node and

always go along the left tree branches until the leaf is achieved

and in its leftmost element (if there are two) is the minimum key

(value) stored in this tree.

Similarly, we go always along the right branches starting from

the root node until the leaf is achieved and in its rightmost

element (if there are two) is the maximum key (value) stored

in this tree. These operations take log Ň time, where Ň is

the number of elements stored in the tree, which is equal

the number of unique keys (values) of the data.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

GetMin and GetMax
Operations

The GetMin and GetMax operations can be implemented in two

different ways dependently on how often extreme elements are

used in other computations using an AVB+tree structure:

2. The second way is used when extreme keys are often used

and should be quickly available (in constant time).

In this case, the leftmost (minimum) and rightmost (maximum)

elements of the leftmost and rightmost leaves appropriately are

additionally pointed from the class implementing the AVB+tree.

If using these extra pointers they are automatically updated

when the minimum or maximum element is changed, and

the minimum and maximum element can be easily recognized

because its neighbor connection to the left or right neighbor

element is set to null.

Less than logarithmic expected computational complexity
(typically constant) for data containing duplicates!

Comparison of Efficiencies

AVB-trees and AVB+trees outperform commonly used
B-trees and B+trees in most cases!

The achieved results proved the concept that AVB+trees are always faster

than B+trees commonly used in databases, and AVB-trees are usually

faster than B-trees when data contain more than 30% of duplicates.

The efficiencies of the same operations on the same datasets from UCI ML

Repository were compared on B-trees, B+trees, AVB-trees, and AVB+trees.

AGDS + AVB+trees
as a still more efficient solution

AVB+trees implemented to AGDS structures
make the data access faster especially for

Big Data datasets and databases.

Attributes

Attributes

Aggregated

and Counted

Values

Objects

AGDS combined with AVB+trees

AVB+tree

AVB+tree

AVB+trees

Neighbor

connections

are weighted:

Comparison of AGDS
with AGDS + AVB+trees

When data contain many duplicates
we practically achieve the constant access

to all data stored in AGDS + AVB+trees.

AGDS + AVB+treesAGDS

Inferences on AGDS
combined with AVB+trees

We do not need to search for common relations
in many (nested) loops but we simply go

along the connections and get results.

Inferences on AGDS
combined with AVB+trees

Such structures can also be used for very fast
recognition, clustering, classification, searching

for the most similar objects etc.

Conclusions
 AGDS structures combined with AVB+trees provide incredibly fast access

to any data stored and sorted for all attributes simultaneously.

 AGDS + AVB+trees stores data together with the most common vertical and
horizontal relations, so there is no need to loop and search for these relations.

 Typical operations on AGDS + AVB+trees structures have pessimistically
logarithmic time, but the expected complexity on typical real data is constant.

Questions or Remarks?
1. A. Horzyk, J. A. Starzyk, J. Graham, Integration of Semantic and Episodic Memories, IEEE Transactions on Neural

Networks and Learning Systems, Vol. 28, Issue 12, Dec. 2017, pp. 3084 - 3095, 2017, DOI: 10.1109/TNNLS.2017.2728203.

2. A. Horzyk, J.A. Starzyk, Multi-Class and Multi-Label Classification Using Associative Pulsing Neural Networks,
IEEE Xplore, In: 2018 IEEE World Congress on Computational Intelligence (WCCI IJCNN 2018), 2018, (in print).

3. A. Horzyk, J.A. Starzyk, Fast Neural Network Adaptation with Associative Pulsing Neurons, IEEE Xplore, In: 2017 IEEE
Symposium Series on Computational Intelligence, pp. 339 -346, 2017, DOI: 10.1109/SSCI.2017.8285369.

4. A. Horzyk, K. Gołdon, Associative Graph Data Structures Used for Acceleration of K Nearest Neighbor Classifiers,
LNCS, In: 27th International Conference on Artificial Neural Networks (ICANN 2018), 2018, (in print).

5. A. Horzyk, Deep Associative Semantic Neural Graphs for Knowledge Representation and Fast Data Exploration,
Proc. of KEOD 2017, SCITEPRESS Digital Library, pp. 67 - 79, 2017, DOI: 10.13140/RG.2.2.30881.92005.

6. A. Horzyk, Neurons Can Sort Data Efficiently, Proc. of ICAISC 2017, Springer-Verlag, LNAI, 2017, pp. 64 - 74,
ICAISC BEST PAPER AWARD 2017 sponsored by Springer.

7. A. Horzyk, J. A. Starzyk and Basawaraj, Emergent creativity in declarative memories, IEEE Xplore, In: 2016 IEEE
Symposium Series on Computational Intelligence, Greece, Athens: Institute of Electrical and Electronics Engineers,
Curran Associates, Inc. 57 Morehouse Lane Red Hook, NY 12571 USA, 2016, ISBN 978-1-5090-4239-5, pp. 1 - 8,
DOI: 10.1109/SSCI.2016.7850029.

8. Horzyk, A., How Does Generalization and Creativity Come into Being in Neural Associative Systems and How Does It
Form Human-Like Knowledge?, Elsevier, Neurocomputing, Vol. 144, 2014, pp. 238 - 257,
DOI: 10.1016/j.neucom.2014.04.046.

9. A. Horzyk, Innovative Types and Abilities of Neural Networks Based on Associative Mechanisms and a New Associative
Model of Neurons - Invited talk at ICAISC 2015, Springer-Verlag, LNAI 9119, 2015, pp. 26 - 38,
DOI 10.1007/978-3-319-19324-3_3.

10. A. Horzyk, Human-Like Knowledge Engineering, Generalization and Creativity in Artificial Neural Associative Systems,
Springer-Verlag, AISC 11156, ISSN 2194-5357, ISBN 978-3-319-19089-1, ISBN 978-3-319-19090-7 (eBook), Springer,
Switzerland, 2016, pp. 39 – 51, DOI 10.1007/978-3-319-19090-7.

University of Science
and Technology

in Krakow, Poland

Adrian Horzyk

horzyk@agh.edu.pl

Google: Horzyk

http://ieeexplore.ieee.org/document/8008846/
doi: 10.1109/SSCI.2017.8285369
doi: 10.13140/RG.2.2.30881.92005
http://home.agh.edu.pl/~horzyk/achievements/ICAISC_2017_BPA_Horzyk.pdf
http://ieeexplore.ieee.org/document/7850029/
http://authors.elsevier.com/sd/article/S0925231214006535
http://www.springer.com/us/book/9783319193236
http://link.springer.com/chapter/10.1007/978-3-319-19324-3_3
DOI 10.1007/978-3-319-19090-7
mailto:horzyk@agh.edu.pl
http://home.agh.edu.pl/~horzyk/index-eng.php

